8,100 research outputs found

    BaNa: a noise resilient fundamental frequency detection algorithm for speech and music

    Get PDF
    Fundamental frequency (F0) is one of the essential features in many acoustic related applications. Although numerous F0 detection algorithms have been developed, the detection accuracy in noisy environments still needs improvement. We present a hybrid noise resilient F0 detection algorithm named BaNa that combines the approaches of harmonic ratios and Cepstrum analysis. A Viterbi algorithm with a cost function is used to identify the F0 value among several F0 candidates. Speech and music databases with eight different types of additive noise are used to evaluate the performance of the BaNa algorithm and several classic and state-of-the-art F0 detection algorithms. Results show that for almost all types of noise and signal-to-noise ratio (SNR) values investigated, BaNa achieves the lowest Gross Pitch Error (GPE) rate among all the algorithms. Moreover, for the 0 dB SNR scenarios, the BaNa algorithm is shown to achieve 20% to 35% GPE rate for speech and 12% to 39% GPE rate for music. We also describe implementation issues that must be addressed to run the BaNa algorithm as a real-time application on a smartphone platform.Peer ReviewedPostprint (author's final draft

    Distributed Power Allocation Algorithm for General Authorised Access in Spectrum Access System

    Full text link
    © 2019 IEEE. To meet the capacity needs of the next generation wireless communications, U.S. Federal Communications Commission has recently introduced Spectrum Access System. Spectrum is shared between three tiers - Incumbents, Priority Access Licensees (PAL) and General Authorised Access (GAA) Licensees. When the incumbents are absent, PAL and GAA share the spectrum under the constraint that GAA ensure the aggregate interference to PAL is no more than -80 dBm within the PAL protection area. Currently GAA users are required to report their geolocations. However, geolocation is private information that GAA may not be willing to share. We propose a distributed GAA power allocation algorithm that does not require centralised coordination on sharing locations with other GAA users via SAS. We analytically proved the critical point of the interference along the PAL protection area to avoid calculating the interference on every points of the area. We proposed exclusion zone, transitional zone and open zone for GAA users to calculate the self-determined transmit power. Simulation results show that our method meets the interference requirement and achieve more than 90% of capacity approximation to the optimal centralised method, while completely masking the GAA locations

    On the Usage of Geolocation-Aware Spectrum Measurements for Incumbent Location and Transmit Power Detection

    Full text link
    © 2017 IEEE. Determining the geographical area that needs to be excluded due to incumbent activity is critical to realize high spectral utilization in spectrum sharing networks. This can be achieved by estimating the incumbent location and transmit power. However, keeping the hardware complexity of sensing nodes to a minimum and scalability are critical for spectrum sharing applications with commercial intent. We present a discrete-space l1-norm minimization solution based on geolocation-aware energy detection measurements. In practice, the accuracy of geolocation tagging is limited. We capture the impact as a basis mismatch and derive the necessary condition that needs to be satisfied for successful detection of multiple incumbents' location and transmit power. We find the upper bound for the probability of eliminating the impact of limited geolocation tagging accuracy in a lognormal shadow fading environment, which is applicable to all generic I1-norm minimization techniques. We propose an algorithm based on orthogonal matching pursuit that decreases the residual in each iteration by allowing a selected set of basis vectors to rotate in a controlled manner. Numerical evaluation of the proposed algorithm in a Licensed Shared Access (LSA) network shows a significant improvement in the probability of missed detection and false alarm

    An Adaptive UAV Network for Increased User Coverage and Spectral Efficiency

    Full text link
    © 2019 IEEE. Unmanned Aerial Vehicles (UAVs) are fast becoming a popular choice in a variety of applications in wireless communication systems. UAV-mounted base stations (UAV-BSs) are an effective and cost-efficient solution for providing wireless connectivity where fixed infrastructure is not available or destroyed. We present a method of using UAV-BSs to provide coverage to mobile users in a fixed area. We propose an algorithm for predicting the user locations based on their mobility data and clustering the predicted locations, so that one UAV-BS would provide coverage to one user cluster. The proposed method, hence is similar to the UAV-BSs following the users to keep them under the coverage region. Simulation results show that the proposed method increases the user coverage by 47%-72% and increases the spectral efficiency by 43%-55% depending on the scenario and in addition, reduces the number of UAV-BSs required to provide coverage

    Applying local cooccurring patterns for object detection from aerial images

    Full text link
    Developing a spatial searching tool to enhance the search car pabilities of large spatial repositories for Geographical Information System (GIS) update has attracted more and more attention. Typically, objects to be detected are represented by many local features or local parts. Testing images are processed by extracting local features which are then matched with the object's model image. Most existing work that uses local features assumes that each of the local features is independent to each other. However, in many cases, this is not true. In this paper, a method of applying the local cooccurring patterns to disclose the cooccurring relationships between local features for object detection is presented. Features including colour features and edge-based shape features of the interested object are collected. To reveal the cooccurring patterns among multiple local features, a colour cooccurrence histogram is constructed and used to search objects of interest from target images. The method is demonstrated in detecting swimming pools from aerial images. Our experimental results show the feasibility of using this method for effectively reducing the labour work in finding man-made objects of interest from aerial images. © Springer-Verlag Berlin Heidelberg 2007

    Opportunistic Access to PAL Channel for Multi-RAT GAA Transmission in Spectrum Access System

    Full text link
    © 2017 IEEE. Spectrum Access System (SAS) is a three tier spectrum sharing framework proposed by the FCC. In this framework the aggregate interference of tier-3 General Authorised Access (GAA) users should be below a predetermined threshold anywhere within the tier-2 Priority Access Licensee (PAL) exclusion zone. GAA are expected to use a diverse range of Radio Access Technologies (RATs) with different levels of loading. We propose an optimal transmit power and probability of spectrum utilisation allocation scheme for GAA users that meets the average aggregate interference constraint within the GAA network. Most of the capacity maximisation studies consider the instantaneous aggregated interference from secondary users. In this paper we present an average aggregated interference method to optimise the capacity of GAA users in a single channel. Simulation results suggest that we can significantly increase the capacity of the channel by considering the probability spectrum utilisation of GAA users
    corecore